

Knowledge Mat - Computer Science – Year 1 - Algorithm

National Curriculum Links: KS1 Computing

- understand what algorithms are; how they are implemented as programs on digital devices; and that programs execute by following precise and unambiguous instructions
- create and debug simple programs and use logical reasoning to predict the behaviour of simple programs

I can ...

CS1.1 tell you what an algorithm is

CS1.2 plan a simple algorithm

CS1.3 give and follow commands, which include straight / turning commands – one at a time.

CS1.4 debug a simple algorithm that is causing an unexpected outcome.

CS1.5 break an algorithm down into smaller parts (decomposing / chunking)

CS1.6 predict if a simple algorithm will work

Computer Science Vocabulary	
computer	BBC Bitesize Computing KS1
science	Computer scientists design new
00.000	software, solve computing
	problems and develop different
	ways to use technology.
computational	involves looking at a problem and
thinking	working out a way a computer
	might be able to help you solve it.
algorithm	a set of instructions in everyday
•	language, e.g 'get ready for
	school', 'go out to play'
decompose	breaking a program down into
•	smaller steps
debugging/	Identifying and correcting
deglitching	mistakes when the program
	doesn't work as expected
abstraction	being able to focus on the
	problem and ignoring detail,
	focus on program before look
	and feel e.g. colour, size,
	background
Input /	data or information that a
output	computer receives in or displays
o and plant	out
unplugged	computer science without using
1 00	the computer
event blocks	all programs need an event
	which acts like a start button
mathematical	Directional language- backward,
language	left, right, angles, clockwise /
- 00-	Anti-clockwise

What would be your algorithm?

BeeBot starts at the beanstalk
Then travels over the bridge
Pauses at the straw house
Finishes at tower

Always plan your algorithm
Then test your algorithm
If the out-come was not what you predicted

Debug Re test

When planning your algorithm you need to think about:

Where do I want my algorithm to start?
What do I want my BeeBot to do?
Does my BeeBot need to pause, change direction?
Input program / test / debug

